Gardener Extension for CoreOS Container Linux
Project Gardener implements the automated management and operation of Kubernetes clusters as a service. Its main principle is to leverage Kubernetes concepts for all of its tasks.
Recently, most of the vendor specific logic has been developed in-tree. However, the project has grown to a size where it is very hard to extend, maintain, and test. With GEP-1 we have proposed how the architecture can be changed in a way to support external controllers that contain their very own vendor specifics. This way, we can keep Gardener core clean and independent.
This controller operates on the OperatingSystemConfig
resource in the extensions.gardener.cloud/v1alpha1
API group. It supports CoreOS Container Linux and Flatcar Container Linux (“a friendly fork of CoreOS Container Linux”).
The controller manages those objects that are requesting CoreOS Container Linux configuration (.spec.type=coreos
) or Flatcar Container Linux configuration (.spec.type=flatcar
):
---
apiVersion: extensions.gardener.cloud/v1alpha1
kind: OperatingSystemConfig
metadata:
name: pool-01-original
namespace: default
spec:
type: coreos
units:
...
files:
...
Please find a concrete example in the example
folder.
After reconciliation the resulting data will be stored in a secret within the same namespace (as the config itself might contain confidential data). The name of the secret will be written into the resource’s .status
field:
...
status:
...
cloudConfig:
secretRef:
name: osc-result-pool-01-original
namespace: default
command: /usr/bin/coreos-cloudinit -from-file=<path>
units:
- docker-monitor.service
- kubelet-monitor.service
- kubelet.service
The secret has one data key cloud_config
that stores the generation.
An example for a ControllerRegistration
resource that can be used to register this controller to Gardener can be found here.
Please find more information regarding the extensibility concepts and a detailed proposal here.
How to start using or developing this extension controller locally
You can run the controller locally on your machine by executing make start
. Please make sure to have the kubeconfig to the cluster you want to connect to ready in the ./dev/kubeconfig
file.
Static code checks and tests can be executed by running make verify
. We are using Go modules for Golang package dependency management and Ginkgo/Gomega for testing.
Feedback and Support
Feedback and contributions are always welcome. Please report bugs or suggestions as GitHub issues or join our Slack channel #gardener (please invite yourself to the Kubernetes workspace here).
Learn more!
Please find further resources about out project here: